Self-Organization, Active Brownian Dynamics, and Biological Applications

نویسندگان

  • Werner Ebeling
  • Frank Schweitzer
چکیده

After summarizing basic features of self-organization such as entropy export, feedbacks and nonlinear dynamics, we discuss several examples in biology. The main part of the paper is devoted to a model of active Brownian motion that allows a stochastic description of the active motion of biological entities based on energy consumption and conversion. This model is applied to the dynamics of swarms with external and interaction potentials. By means of analytical results, we can distiguish between translational, rotational and amoebic modes of swarm motion. We further investigate swarms of active Brownian particles interacting via chemical fields and demonstrate the application of this model to phenomena such as biological aggregation and trail formation in insects. “Every theory, whether in the physical or biological or social sciences, distorts reality in that it oversimplifies. But if it is a good theory, what is omitted is outweighted by the beam of light and understanding thrown over the diverse facts.” Paul A. Samuelson

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic models of intracellular transport

The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the mot...

متن کامل

Chapter 1 Applications of Density Functional Theory in Soft Condensed Matter

Applications of classical density functional theory (DFT) to soft matter systems like colloids, liquid crystals and polymer solutions are discussed with a focus on the freezing transition and on nonequilibrium Brownian dynamics. First, after a brief reminder of equilibrium density functional theory, DFT is applied to the freezing transition of liquids into crystalline lattices. In particular, s...

متن کامل

Mathematical and Physical Modeling of Actin Dynamics in Motile Cells

Mathematical modeling has been very instrumental in aiding traditional experimental methods in uncovering the mysteries of actin dynamics. Here we review recent quantitative models of actin dynamics focusing on ATP hydrolysis effects, force generation by single actin filaments and networks, self-organization and dynamics of actin networks, dynamics of lamellipodia, filopodia and lamella, and in...

متن کامل

Active particles in complex and crowded environments

Differently from passive Brownian particles, active particles, also known as self-propelled Brownian particles or microswimmers and nanoswimmers, are capable of taking up energy from their environment and converting it into directed motion. Because of this constant flow of energy, their behavior can be explained and understood only within the framework of nonequilibrium physics. In the biologic...

متن کامل

Circular motion of asymmetric self-propelling particles.

Micron-sized self-propelled (active) particles can be considered as model systems for characterizing more complex biological organisms like swimming bacteria or motile cells. We produce asymmetric microswimmers by soft lithography and study their circular motion on a substrate and near channel boundaries. Our experimental observations are in full agreement with a theory of Brownian dynamics for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002